Skip to content

Calculate Module

assign_voxels(arr, voxel_resolution)

Assigns voxel grids to spatial data points based on the specified resolutions.

Parameters:

Name Type Description Default
arr ndarray

Input array-like object containing point cloud data with 'X', 'Y', and 'HeightAboveGround' fields.

required
voxel_resolution tuple of floats

The resolution for x, y, and z dimensions of the voxel grid.

required

Returns:

Type Description
Tuple[ndarray, List]

tuple of (numpy.ndarray, List): A tuple containing the histogram of the voxel grid (with corrected orientation) and the extent of the point cloud.

Source code in pyforestscan/calculate.py
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def assign_voxels(arr, voxel_resolution) -> Tuple[np.ndarray, List]:
    """
    Assigns voxel grids to spatial data points based on the specified resolutions.

    Args:
        arr (numpy.ndarray): Input array-like object containing point cloud data with 'X', 'Y', and 'HeightAboveGround' fields.
        voxel_resolution (tuple of floats): The resolution for x, y, and z dimensions of the voxel grid.

    Returns:
        tuple of (numpy.ndarray, List): A tuple containing the histogram of the voxel grid (with corrected orientation) and the extent of the point cloud.
    """
    dx, dy, dz = voxel_resolution

    pts = arr[arr['HeightAboveGround'] >= 0]

    x0 = np.floor(pts['X'].min() / dx) * dx
    y0 = np.ceil (pts['Y'].max() / dy) * dy

    x_bins = np.arange(x0, pts['X'].max() + dx, dx)
    y_bins = np.arange(y0, pts['Y'].min() - dy, -dy)
    z_bins = np.arange(0.0, pts['HeightAboveGround'].max() + dz, dz)

    hist, _ = np.histogramdd(
        np.column_stack((pts['X'], pts['Y'], pts['HeightAboveGround'])),
        bins=(x_bins, y_bins[::-1], z_bins)
    )
    hist = hist[:, ::-1, :]

    extent = [x_bins[0], x_bins[-1], y_bins[-1], y_bins[0]]
    return hist, extent

calculate_chm(arr, voxel_resolution, interpolation='linear', interp_valid_region=False, interp_clean_edges=False)

Calculate the Canopy Height Model (CHM) for a given voxel grid.

The CHM is computed as the maximum 'HeightAboveGround' value within each (X, Y) voxel. Optionally, gaps in the CHM can be filled using interpolation.

Parameters:

Name Type Description Default
arr ndarray

Input structured numpy array containing point cloud data with fields 'X', 'Y', and 'HeightAboveGround'.

required
voxel_resolution tuple of float

The resolution for the X and Y dimensions of the voxel grid, specified as (x_resolution, y_resolution).

required
interpolation str or None

Method for interpolating gaps in the CHM. Supported methods are "nearest", "linear", "cubic", or None. If None, no interpolation is performed. Defaults to "linear".

'linear'
interp_valid_region bool

Whether to calculate a valid region mask using morphological operations for interpolation. If True, interpolation is only applied within the valid data region. If False (default), interpolation is applied to all NaN values. Ignored if interpolation is None.

False
interp_clean_edges bool

Whether to clean edge fringes of the interpolated CHM. Default is False. Ignored if interpolation is None.

False

Returns:

Name Type Description
tuple Tuple[ndarray, List]
  • np.ndarray: 2D numpy array representing the CHM, with each value corresponding to the maximum height in that (X, Y) voxel.
  • list: The spatial extent as [x_min, x_max, y_min, y_max].

Raises:

Type Description
ValueError

If input array does not contain the required fields.

ValueError

If interpolation is specified but not one of the supported methods.

Source code in pyforestscan/calculate.py
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
def calculate_chm(arr, voxel_resolution, interpolation="linear",
                  interp_valid_region=False, interp_clean_edges=False) -> Tuple[np.ndarray, List]:
    """
    Calculate the Canopy Height Model (CHM) for a given voxel grid.

    The CHM is computed as the maximum 'HeightAboveGround' value within each (X, Y) voxel.
    Optionally, gaps in the CHM can be filled using interpolation.

    Args:
        arr (np.ndarray): Input structured numpy array containing point cloud data
            with fields 'X', 'Y', and 'HeightAboveGround'.
        voxel_resolution (tuple of float): The resolution for the X and Y dimensions
            of the voxel grid, specified as (x_resolution, y_resolution).
        interpolation (str or None, optional): Method for interpolating gaps in the CHM.
            Supported methods are "nearest", "linear", "cubic", or None. If None, no interpolation
            is performed. Defaults to "linear".
        interp_valid_region (bool): Whether to calculate a valid region mask using morphological operations for
            interpolation. If True, interpolation is only applied within the valid data region. If False (default),
            interpolation is applied to all NaN values. Ignored if `interpolation` is None.
        interp_clean_edges (bool): Whether to clean edge fringes of the interpolated CHM. Default is False.
            Ignored if `interpolation` is None.

    Returns:
        tuple:
            - np.ndarray: 2D numpy array representing the CHM, with each value corresponding to the maximum
                height in that (X, Y) voxel.
            - list: The spatial extent as [x_min, x_max, y_min, y_max].

    Raises:
        ValueError: If input array does not contain the required fields.
        ValueError: If `interpolation` is specified but not one of the supported methods.

    """
    x_resolution, y_resolution = voxel_resolution[:2]
    x = arr['X']
    y = arr['Y']
    z = arr['HeightAboveGround']

    x_min, x_max = x.min(), x.max()
    y_min, y_max = y.min(), y.max()

    x_bins = np.arange(x_min, x_max + x_resolution, x_resolution)
    y_bins = np.arange(y_min, y_max + y_resolution, y_resolution)

    x_indices = np.digitize(x, x_bins) - 1
    y_indices = np.digitize(y, y_bins) - 1

    chm = np.full((len(x_bins) - 1, len(y_bins) - 1), np.nan)

    for xi, yi, zi in zip(x_indices, y_indices, z):
        if 0 <= xi < chm.shape[0] and 0 <= yi < chm.shape[1]:
            if np.isnan(chm[xi, yi]) or zi > chm[xi, yi]:
                chm[xi, yi] = zi

    if interpolation is not None:
        if interp_valid_region is True:
            valid_region_mask = _calc_valid_region_mask(chm)
            interp_mask = np.isnan(chm) & valid_region_mask
        else:
            interp_mask = np.isnan(chm)

        if np.any(interp_mask):
            x_grid, y_grid = np.meshgrid(
                (x_bins[:-1] + x_bins[1:]) / 2,
                (y_bins[:-1] + y_bins[1:]) / 2
            )

            valid_mask = ~np.isnan(chm)
            valid_x = x_grid.flatten()[valid_mask.flatten()]
            valid_y = y_grid.flatten()[valid_mask.flatten()]
            valid_values = chm.flatten()[valid_mask.flatten()]

            interp_coords = np.column_stack([
                x_grid.flatten()[interp_mask.flatten()],
                y_grid.flatten()[interp_mask.flatten()]
            ])

            if len(interp_coords) > 0 and len(valid_values) > 0:
                chm[interp_mask] = griddata(
                    points=np.column_stack([valid_x, valid_y]),
                    values=valid_values,
                    xi=interp_coords,
                    method=interpolation
                )
            if interp_clean_edges:
                chm = _clean_edges(chm)

    chm = np.flip(chm, axis=1)
    extent = [x_min, x_max, y_min, y_max]

    return chm, extent

calculate_fhd(voxel_returns)

Calculate the Foliage Height Diversity (FHD) for a given set of voxel returns.

This function computes FHD by calculating the entropy of the voxel return proportions along the Z (height) axis, which represents the vertical diversity of canopy structure.

Parameters:

Name Type Description Default
voxel_returns ndarray

3D numpy array of shape (X, Y, Z) representing voxel returns, where X and Y are spatial dimensions and Z represents height bins (vertical layers).

required

Returns:

Type Description
ndarray

np.ndarray: 2D numpy array of shape (X, Y) with FHD values for each (X, Y) location. Areas with no voxel returns will have NaN values.

Source code in pyforestscan/calculate.py
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def calculate_fhd(voxel_returns) -> np.ndarray:
    """
    Calculate the Foliage Height Diversity (FHD) for a given set of voxel returns.

    This function computes FHD by calculating the entropy of the voxel return proportions
    along the Z (height) axis, which represents the vertical diversity of canopy structure.

    Args:
        voxel_returns (np.ndarray): 3D numpy array of shape (X, Y, Z) representing voxel returns,
            where X and Y are spatial dimensions and Z represents height bins (vertical layers).

    Returns:
        np.ndarray: 2D numpy array of shape (X, Y) with FHD values for each (X, Y) location.
            Areas with no voxel returns will have NaN values.
    """
    sum_counts = np.sum(voxel_returns, axis=2)

    with np.errstate(divide='ignore', invalid='ignore'):
        proportions = np.divide(
            voxel_returns,
            sum_counts[..., None],
            out=np.zeros_like(voxel_returns, dtype=float),
            where=sum_counts[..., None] != 0
        )

    fhd = entropy(proportions, axis=2)
    fhd[sum_counts == 0] = np.nan
    return fhd

calculate_pad(voxel_returns, voxel_height=1.0, beer_lambert_constant=1.0, drop_ground=True)

Calculate the Plant Area Density (PAD) using the Beer-Lambert Law.

Parameters:

Name Type Description Default
voxel_returns ndarray

3D numpy array of shape (X, Y, Z) representing the LiDAR returns in each voxel column.

required
voxel_height float

Height of each voxel. Defaults to 1.0.

1.0
beer_lambert_constant float

The Beer-Lambert constant used in the calculation. Defaults to 1.0.

1.0
drop_ground bool

If True, sets PAD values in the ground (lowest) voxel layer to NaN in the output. Defaults to True.

True

Returns:

Type Description
ndarray

np.ndarray: 3D numpy array containing PAD values for each voxel, same shape as voxel_returns. Columns that have zero returns across all Z are set to NaN.

Source code in pyforestscan/calculate.py
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def calculate_pad(voxel_returns,
                  voxel_height=1.0,
                  beer_lambert_constant=1.0,
                  drop_ground=True
                  ) -> np.ndarray:
    """
    Calculate the Plant Area Density (PAD) using the Beer-Lambert Law.

    Args:
        voxel_returns (np.ndarray): 3D numpy array of shape (X, Y, Z) representing
            the LiDAR returns in each voxel column.
        voxel_height (float, optional): Height of each voxel. Defaults to 1.0.
        beer_lambert_constant (float, optional): The Beer-Lambert constant used
            in the calculation. Defaults to 1.0.
        drop_ground (bool, optional): If True, sets PAD values in the ground (lowest)
            voxel layer to NaN in the output. Defaults to True.

    Returns:
        np.ndarray: 3D numpy array containing PAD values for each voxel, same shape as `voxel_returns`.
            Columns that have zero returns across all Z are set to NaN.
    """
    if voxel_height <= 0:
        raise ValueError(
            f"voxel_height must be > 0 metres (got {voxel_height})"
        )
    reversed_cols = voxel_returns[:, :, ::-1]

    total = np.sum(reversed_cols, axis=2, keepdims=True)

    csum = np.cumsum(reversed_cols, axis=2)

    shots_out = total - csum

    shots_in = np.concatenate(
        (total, shots_out[:, :, :-1]), axis=2
    )

    with np.errstate(divide='ignore', invalid='ignore'):
        pad_sky = np.log(shots_in / shots_out) / (beer_lambert_constant * voxel_height)
    pad_sky[~np.isfinite(pad_sky)] = np.nan

    pad = pad_sky[:, :, ::-1]

    if drop_ground:
        pad[:, :, 0] = np.nan

    pad[voxel_returns[:, :, 0] == 0, :] = np.nan

    return pad

calculate_pai(pad, voxel_height, min_height=1.0, max_height=None)

Calculate Plant Area Index (PAI) from Plant Area Density (PAD) data by summing PAD values along the height (Z) axis.

Parameters:

Name Type Description Default
pad ndarray

3D numpy array representing Plant Area Density (PAD) values, shape (X, Y, Z).

required
voxel_height float

Height of each voxel in meters.

required
min_height float

Minimum height in meters for summing PAD values. Defaults to 1.0.

1.0
max_height float

Maximum height in meters for summing PAD values. If None, uses the full height of the input array. Defaults to None.

None

Returns:

Type Description
ndarray

np.ndarray: 2D numpy array of shape (X, Y) with PAI values for each (x, y) voxel column.

Raises:

Type Description
ValueError

If min_height is greater than or equal to max_height.

Source code in pyforestscan/calculate.py
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def calculate_pai(pad,
                  voxel_height,
                  min_height=1.0,
                  max_height=None) -> np.ndarray:
    """
    Calculate Plant Area Index (PAI) from Plant Area Density (PAD) data by summing PAD values along the height (Z) axis.

    Args:
        pad (np.ndarray): 3D numpy array representing Plant Area Density (PAD) values, shape (X, Y, Z).
        voxel_height (float): Height of each voxel in meters.
        min_height (float, optional): Minimum height in meters for summing PAD values. Defaults to 1.0.
        max_height (float, optional): Maximum height in meters for summing PAD values. If None, uses the full height of the input array. Defaults to None.

    Returns:
        np.ndarray: 2D numpy array of shape (X, Y) with PAI values for each (x, y) voxel column.

    Raises:
        ValueError: If min_height is greater than or equal to max_height.
    """
    if max_height is None:
        max_height = pad.shape[2] * voxel_height

    if min_height >= max_height:
        raise ValueError("Minimum height index must be less than maximum height index.")

    start_idx = int(np.ceil(min_height / voxel_height))
    end_idx   = int(np.floor(max_height / voxel_height))

    core = pad[:, :, start_idx:end_idx]
    pai  = np.nansum(core, axis=2) * voxel_height
    return pai

generate_dtm(ground_points, resolution=2.0)

Generates a Digital Terrain Model (DTM) raster from classified ground points.

Parameters:

Name Type Description Default
ground_points list

Point cloud arrays of classified ground points.

required
resolution float

Spatial resolution of the DTM in meters.

2.0

Returns:

Name Type Description
tuple Tuple[ndarray, List]

A tuple containing the DTM as a 2D NumPy array and the spatial extent [x_min, x_max, y_min, y_max].

Raises:

Type Description
ValueError

If no ground points are found for DTM generation.

KeyError

If point cloud data is missing 'X', 'Y', or 'Z' fields.

Source code in pyforestscan/calculate.py
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def generate_dtm(ground_points, resolution=2.0) -> Tuple[np.ndarray, List]:
    """
    Generates a Digital Terrain Model (DTM) raster from classified ground points.

    Args:
        ground_points (list): Point cloud arrays of classified ground points.
        resolution (float): Spatial resolution of the DTM in meters.

    Returns:
        tuple: A tuple containing the DTM as a 2D NumPy array and the spatial extent [x_min, x_max, y_min, y_max].

    Raises:
        ValueError: If no ground points are found for DTM generation.
        KeyError: If point cloud data is missing 'X', 'Y', or 'Z' fields.
    """
    #todo: add parameter to allow interpolation of NA values.
    try:
        x = np.array([pt['X'] for array in ground_points for pt in array])
        y = np.array([pt['Y'] for array in ground_points for pt in array])
        z = np.array([pt['Z'] for array in ground_points for pt in array])
    except ValueError:
        raise ValueError("Ground point cloud data missing 'X', 'Y', or 'Z' fields.")

    x_min, x_max = x.min(), x.max()
    y_min, y_max = y.min(), y.max()

    x_bins = np.arange(x_min, x_max + resolution, resolution)
    y_bins = np.arange(y_min, y_max + resolution, resolution)

    x_indices = np.digitize(x, x_bins) - 1
    y_indices = np.digitize(y, y_bins) - 1

    dtm = np.full((len(x_bins) - 1, len(y_bins) - 1), np.nan)

    for xi, yi, zi in zip(x_indices, y_indices, z):
        if 0 <= xi < dtm.shape[0] and 0 <= yi < dtm.shape[1]:
            if np.isnan(dtm[xi, yi]) or zi < dtm[xi, yi]:
                dtm[xi, yi] = zi

    dtm = np.fliplr(dtm)

    extent = [x_min, x_max, y_min, y_max]

    return dtm, extent