Skip to content

Process Module

process_with_tiles(ept_file, tile_size, output_path, metric, voxel_size, voxel_height=1, buffer_size=0.1, srs=None, hag=False, hag_dtm=False, dtm=None, bounds=None, interpolation=None, remove_outliers=False, cover_min_height=2.0, cover_k=0.5, pai_min_height=1.0, fhd_min_height=0.0, skip_existing=False, verbose=False, thin_radius=None, voxelgrid_cell=None, voxelgrid_mode='first')

Process a large EPT point cloud by tiling, compute CHM or other metrics for each tile, and write the results to the specified output directory.

Parameters:

Name Type Description Default
ept_file str

Path to the EPT file containing the point cloud data.

required
tile_size tuple

Size of each tile as (tile_width, tile_height).

required
output_path str

Directory where the output files will be saved.

required
metric str

Metric to compute for each tile ("chm", "fhd", "pai", or "cover").

required
voxel_size tuple

Voxel resolution as (x_resolution, y_resolution, z_resolution).

required
voxel_height float

Height of each voxel in meters. Required if metric is "fhd", "pai", or "cover".

1
buffer_size float

Fractional buffer size relative to tile size (e.g., 0.1 for 10% buffer). Defaults to 0.1.

0.1
srs str

Spatial Reference System for the output. If None, uses SRS from the EPT file.

None
hag bool

If True, compute Height Above Ground using Delaunay triangulation. Defaults to False.

False
hag_dtm bool

If True, compute Height Above Ground using a provided DTM raster. Defaults to False.

False
dtm str

Path to the DTM raster file. Required if hag_dtm is True.

None
bounds tuple

Spatial bounds to crop the data. Must be of the form ([xmin, xmax], [ymin, ymax], [zmin, zmax]) or ([xmin, xmax], [ymin, ymax]). If None, tiling is done over the entire dataset.

None
interpolation str or None

Interpolation method for CHM calculation ("linear", "cubic", "nearest", or None).

None
remove_outliers bool

Whether to remove statistical outliers before calculating metrics. Defaults to False.

False
cover_min_height float

Height threshold (in meters) for canopy cover (used when metric == "cover"). Defaults to 2.0.

2.0
cover_k float

Beer–Lambert extinction coefficient for canopy cover. Defaults to 0.5.

0.5
pai_min_height float

Minimum height (m) to integrate PAI. Defaults to 1.0.

1.0
fhd_min_height float

Minimum height (m) to include in FHD entropy. Defaults to 0.0.

0.0
skip_existing bool

If True, skip tiles whose output file already exists. Defaults to False.

False
verbose bool

If True, print warnings for empty/invalid tiles and buffer adjustments. Defaults to False.

False
thin_radius float or None

If provided (> 0), apply Poisson radius-based thinning per tile before metrics. Units are in the same CRS as the data (e.g., meters). Defaults to None.

None
voxelgrid_cell float or None

If provided (> 0), apply PDAL voxel-grid downsampling per tile before metrics using cell edge length of voxelgrid_cell. Defaults to None.

None
voxelgrid_mode str

Representative selection for voxel-grid downsampling. Common values are "first" (keep first point unchanged) or "center" (snap kept point to voxel center). Defaults to "first".

'first'

Returns:

Type Description
None

None

Raises:

Type Description
ValueError

If an unsupported metric is requested, if buffer or voxel sizes are invalid, or required arguments are missing.

FileNotFoundError

If the EPT or DTM file does not exist, or a required file for processing is missing.

Source code in pyforestscan/process.py
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
def process_with_tiles(ept_file, tile_size, output_path, metric, voxel_size,
                       voxel_height=1, buffer_size=0.1, srs=None, hag=False,
                       hag_dtm=False, dtm=None, bounds=None, interpolation=None, remove_outliers=False,
                       cover_min_height: float = 2.0, cover_k: float = 0.5,
                       pai_min_height: float = 1.0,
                       fhd_min_height: float = 0.0,
                       skip_existing: bool = False, verbose: bool = False,
                       thin_radius: float | None = None,
                       voxelgrid_cell: float | None = None,
                       voxelgrid_mode: str = "first") -> None:
    """
    Process a large EPT point cloud by tiling, compute CHM or other metrics for each tile,
    and write the results to the specified output directory.

    Args:
        ept_file (str): Path to the EPT file containing the point cloud data.
        tile_size (tuple): Size of each tile as (tile_width, tile_height).
        output_path (str): Directory where the output files will be saved.
        metric (str): Metric to compute for each tile ("chm", "fhd", "pai", or "cover").
        voxel_size (tuple): Voxel resolution as (x_resolution, y_resolution, z_resolution).
        voxel_height (float, optional): Height of each voxel in meters. Required if metric is "fhd", "pai", or "cover".
        buffer_size (float, optional): Fractional buffer size relative to tile size (e.g., 0.1 for 10% buffer). Defaults to 0.1.
        srs (str, optional): Spatial Reference System for the output. If None, uses SRS from the EPT file.
        hag (bool, optional): If True, compute Height Above Ground using Delaunay triangulation. Defaults to False.
        hag_dtm (bool, optional): If True, compute Height Above Ground using a provided DTM raster. Defaults to False.
        dtm (str, optional): Path to the DTM raster file. Required if hag_dtm is True.
        bounds (tuple, optional): Spatial bounds to crop the data. Must be of the form
            ([xmin, xmax], [ymin, ymax], [zmin, zmax]) or ([xmin, xmax], [ymin, ymax]).
            If None, tiling is done over the entire dataset.
        interpolation (str or None, optional): Interpolation method for CHM calculation ("linear", "cubic", "nearest", or None).
        remove_outliers (bool, optional): Whether to remove statistical outliers before calculating metrics. Defaults to False.
        cover_min_height (float, optional): Height threshold (in meters) for canopy cover (used when metric == "cover"). Defaults to 2.0.
        cover_k (float, optional): Beer–Lambert extinction coefficient for canopy cover. Defaults to 0.5.
        pai_min_height (float, optional): Minimum height (m) to integrate PAI. Defaults to 1.0.
        fhd_min_height (float, optional): Minimum height (m) to include in FHD entropy. Defaults to 0.0.
        skip_existing (bool, optional): If True, skip tiles whose output file already exists. Defaults to False.
        verbose (bool, optional): If True, print warnings for empty/invalid tiles and buffer adjustments. Defaults to False.
        thin_radius (float or None, optional): If provided (> 0), apply Poisson radius-based thinning per tile before metrics.
            Units are in the same CRS as the data (e.g., meters). Defaults to None.
        voxelgrid_cell (float or None, optional): If provided (> 0), apply PDAL voxel-grid downsampling per tile before metrics
            using cell edge length of ``voxelgrid_cell``. Defaults to None.
        voxelgrid_mode (str, optional): Representative selection for voxel-grid downsampling. Common values are
            "first" (keep first point unchanged) or "center" (snap kept point to voxel center). Defaults to "first".

    Returns:
        None

    Raises:
        ValueError: If an unsupported metric is requested, if buffer or voxel sizes are invalid, or required arguments are missing.
        FileNotFoundError: If the EPT or DTM file does not exist, or a required file for processing is missing.
    """
    if metric not in ["chm", "fhd", "pai", "cover"]:
        raise ValueError(f"Unsupported metric: {metric}")

    (min_z, max_z) = (None, None)
    if bounds:
        if len(bounds) == 2:
            (min_x, max_x), (min_y, max_y) = bounds
        else:
            (min_x, max_x), (min_y, max_y), (min_z, max_z) = bounds
    else:
        min_x, max_x, min_y, max_y, min_z, max_z = get_bounds_from_ept(ept_file)

    if not srs:
        srs = get_srs_from_ept(ept_file)

    num_tiles_x = int(np.ceil((max_x - min_x) / tile_size[0]))
    num_tiles_y = int(np.ceil((max_y - min_y) / tile_size[1]))
    total_tiles = num_tiles_x * num_tiles_y

    if not os.path.exists(output_path):
        os.makedirs(output_path)

    with tqdm(total=total_tiles, desc="Processing tiles") as pbar:
        for i in range(num_tiles_x):
            for j in range(num_tiles_y):
                # Apply buffer+crop for CHM and for PAI/COVER to avoid seam artifacts.
                if metric in ["chm", "pai", "cover"]:
                    current_buffer_size = buffer_size
                else:
                    current_buffer_size = 0.0

                buffer_x = current_buffer_size * tile_size[0]
                buffer_y = current_buffer_size * tile_size[1]
                tile_min_x = min_x + i * tile_size[0] - buffer_x
                tile_max_x = min_x + (i + 1) * tile_size[0] + buffer_x
                tile_min_y = min_y + j * tile_size[1] - buffer_y
                tile_max_y = min_y + (j + 1) * tile_size[1] + buffer_y

                tile_min_x = max(min_x, tile_min_x)
                tile_max_x = min(max_x, tile_max_x)
                tile_min_y = max(min_y, tile_min_y)
                tile_max_y = min(max_y, tile_max_y)

                if tile_max_x <= tile_min_x or tile_max_y <= tile_min_y:
                    if verbose:
                        print(f"Warning: Skipping tile ({i}, {j}) due to invalid spatial extent.")
                    pbar.update(1)
                    continue

                if metric == "chm":
                    result_file = os.path.join(output_path, f"tile_{i}_{j}_chm.tif")
                else:
                    result_file = os.path.join(output_path, f"tile_{i}_{j}_{metric}.tif")

                if skip_existing and os.path.isfile(result_file):
                    pbar.update(1)
                    continue

                if min_z and max_z:
                    tile_bounds = ([tile_min_x, tile_max_x], [tile_min_y, tile_max_y], [min_z, max_z])
                else:
                    tile_bounds = ([tile_min_x, tile_max_x], [tile_min_y, tile_max_y])
                tile_pipeline_stages = []

                if hag:
                    tile_pipeline_stages.append(_hag_delaunay())
                elif hag_dtm:
                    if not dtm or not os.path.isfile(dtm):
                        raise FileNotFoundError(f"DTM file is required for HAG calculation using DTM: {dtm}")
                    cropped_dtm_path = _crop_dtm(
                        dtm,
                        tile_min_x, tile_min_y,
                        tile_max_x, tile_max_y
                    )
                    tile_pipeline_stages.append(_hag_raster(cropped_dtm_path))
                base_pipeline = {
                    "type": "readers.ept",
                    "filename": ept_file,
                    "bounds": f"{tile_bounds}",
                }
                tile_pipeline_json = {
                    "pipeline": [base_pipeline] + tile_pipeline_stages
                }

                tile_pipeline = pdal.Pipeline(json.dumps(tile_pipeline_json))
                tile_pipeline.execute()

                # Extract points from pipeline output safely
                arrays = tile_pipeline.arrays if hasattr(tile_pipeline, "arrays") else []
                if not arrays or arrays[0].size == 0:
                    if verbose:
                        print(f"Warning: No data in tile ({i}, {j}). Skipping.")
                    pbar.update(1)
                    continue

                if remove_outliers:
                    tile_points = remove_outliers_and_clean(arrays)[0]
                else:
                    tile_points = arrays[0]

                # Optional thinning before metrics
                if thin_radius is not None and thin_radius > 0:
                    thinned = downsample_poisson([tile_points], thin_radius=thin_radius)
                    tile_points = thinned[0] if thinned else tile_points

                    if tile_points.size == 0:
                        if verbose:
                            print(f"Warning: Tile ({i}, {j}) empty after thinning. Skipping.")
                        pbar.update(1)
                        continue

                if voxelgrid_cell is not None and voxelgrid_cell > 0:
                    try:
                        vthinned = downsample_voxel([tile_points], cell=float(voxelgrid_cell), mode=voxelgrid_mode)
                    except Exception as e:
                        # Fail soft per tile to keep processing going
                        if verbose:
                            print(f"Warning: Voxel-grid downsampling failed for tile ({i}, {j}): {e}. Proceeding without.")
                        vthinned = None
                    if vthinned:
                        tile_points = vthinned[0]
                    if tile_points.size == 0:
                        if verbose:
                            print(f"Warning: Tile ({i}, {j}) empty after voxel-grid thinning. Skipping.")
                        pbar.update(1)
                        continue

                buffer_pixels_x = int(np.ceil(buffer_x / voxel_size[0]))
                buffer_pixels_y = int(np.ceil(buffer_y / voxel_size[1]))

                if metric == "chm":
                    chm, extent = calculate_chm(tile_points, voxel_size, interpolation=interpolation)

                    if buffer_pixels_x * 2 >= chm.shape[1] or buffer_pixels_y * 2 >= chm.shape[0]:
                        if verbose:
                            print(
                                f"Warning: Buffer size exceeds CHM dimensions for tile ({i}, {j}). Adjusting buffer size.")
                        buffer_pixels_x = max(0, chm.shape[1] // 2 - 1)
                        buffer_pixels_y = max(0, chm.shape[0] // 2 - 1)

                    # Safe crop: avoid Python's -0 slice behavior producing empty arrays.
                    if buffer_pixels_x < 0 or buffer_pixels_y < 0:
                        raise ValueError("Computed negative buffer pixels; check voxel and buffer sizes.")

                    start_x = buffer_pixels_x
                    end_x = chm.shape[1] - buffer_pixels_x if buffer_pixels_x > 0 else chm.shape[1]
                    start_y = buffer_pixels_y
                    end_y = chm.shape[0] - buffer_pixels_y if buffer_pixels_y > 0 else chm.shape[0]

                    # If cropping would yield an empty array due to small tiles, skip cropping
                    if end_x <= start_x or end_y <= start_y:
                        # Fall back to no buffer crop for this tile
                        core = chm
                    else:
                        core = chm[start_y:end_y, start_x:end_x]

                    chm = core

                    # Derive core extent from CHM grid extent and actual pixel crop to avoid stretching
                    dx, dy = voxel_size[0], voxel_size[1]
                    grid_extent = extent  # [x_min, x_max, y_min, y_max] as returned by calculate_chm
                    core_extent = (
                        grid_extent[0] + buffer_pixels_x * dx,
                        grid_extent[1] - buffer_pixels_x * dx,
                        grid_extent[2] + buffer_pixels_y * dy,
                        grid_extent[3] - buffer_pixels_y * dy,
                    )

                    create_geotiff(chm, result_file, srs, core_extent)
                elif metric in ["fhd", "pai", "cover"]:
                    voxels, spatial_extent = assign_voxels(tile_points, voxel_size)

                    if metric == "fhd":
                        if voxel_size[-1] <= 0:
                            raise ValueError("voxel_size z-resolution must be > 0 for FHD computation.")
                        result = calculate_fhd(
                            voxels,
                            voxel_height=voxel_size[-1],
                            min_height=fhd_min_height,
                        )
                    elif metric == "pai":
                        if not voxel_height:
                            raise ValueError(f"voxel_height is required for metric {metric}")

                        pad = calculate_pad(voxels, voxel_size[-1])

                        if np.all(pad == 0):
                            result = np.zeros((pad.shape[0], pad.shape[1]))
                        else:
                            # Guard against empty integration range when top height < default min_height
                            effective_max_height = pad.shape[2] * voxel_size[-1]
                            default_min_height = pai_min_height
                            if default_min_height >= effective_max_height:
                                result = np.zeros((pad.shape[0], pad.shape[1]))
                            else:
                                result = calculate_pai(pad, voxel_height, min_height=pai_min_height)
                    elif metric == "cover":
                        if not voxel_height:
                            raise ValueError(f"voxel_height is required for metric {metric}")

                        pad = calculate_pad(voxels, voxel_size[-1])
                        if np.all(pad == 0):
                            result = np.zeros((pad.shape[0], pad.shape[1]))
                        else:
                            result = calculate_canopy_cover(
                                pad,
                                voxel_height=voxel_height,
                                min_height=cover_min_height,
                                max_height=None,
                                k=cover_k,
                            )

                    if current_buffer_size > 0:
                        if buffer_pixels_x * 2 >= result.shape[1] or buffer_pixels_y * 2 >= result.shape[0]:
                            if verbose:
                                print(
                                    f"Warning: Buffer size exceeds {metric.upper()} dimensions for tile ({i}, {j}). "
                                    f"Adjusting buffer size."
                                )
                            buffer_pixels_x = max(0, result.shape[1] // 2 - 1)
                            buffer_pixels_y = max(0, result.shape[0] // 2 - 1)

                        # Safe crop (avoid -0 slicing)
                        start_x = buffer_pixels_x
                        end_x = result.shape[1] - buffer_pixels_x if buffer_pixels_x > 0 else result.shape[1]
                        start_y = buffer_pixels_y
                        end_y = result.shape[0] - buffer_pixels_y if buffer_pixels_y > 0 else result.shape[0]

                        if end_x > start_x and end_y > start_y:
                            result = result[start_y:end_y, start_x:end_x]

                    # Derive core extent from voxel grid extent and applied pixel crop to avoid stretching
                    dx, dy = voxel_size[0], voxel_size[1]
                    core_extent = (
                        spatial_extent[0] + buffer_pixels_x * dx,
                        spatial_extent[1] - buffer_pixels_x * dx,
                        spatial_extent[2] + buffer_pixels_y * dy,
                        spatial_extent[3] - buffer_pixels_y * dy,
                    )

                    if core_extent[1] <= core_extent[0] or core_extent[3] <= core_extent[2]:
                        if verbose:
                            print(f"Warning: Invalid core extent for tile ({i}, {j}): {core_extent}. Skipping.")
                        pbar.update(1)
                        continue

                    create_geotiff(result, result_file, srs, core_extent)
                else:
                    raise ValueError(f"Unsupported metric: {metric}")

                pbar.update(1)